Транспортные средства на сжатом воздухе приводятся в движение пневмодвигателями, использующими воздух, к примеру, сжатый воздух, запасённый в баллонах. Такой привод называется пневматическим. Вместо смеси топлива с воздухом и её сжигания в двигателе, и последующей передачи энергии поршням от горячих расширяющихся газов, в транспортных средствах на сжатом воздухе передача энергии поршням осуществляется от сжатого воздуха.
Системы привода транспортных средств, работающие на сжатом воздухе, могут также входить в состав гибридных систем, то есть систем, включающих также электрические батареи и топливные баки для их перезарядки.
Типичные двигатели, работающие на сжатом воздухе (пневмодвигатели), используют один или несколько поршней. Пневмодвигатели принципиально по конструкции очень похожи на гидродвигатели. В некоторых случаях целесообразно нагревать воздух или двигатель для повышения отдачи энергии. Особенно это актуально с учётом того, что расширяющийся в пневмодвигателях воздух охлаждается.
Баллоны для хранения сжатого воздуха должны быть разработаны в соответствии со стандартами безопасности для сосудов, работающих под давлением. Примером такого стандарта является ISO 11439[1].
Баллоны могут быть изготовлены из следующих материалов:
Материалы на базе пластика легче металлических, но в целом они дороже. Металлические баллоны могут выдерживать большое количество циклов нагружения-разгрузки, но их необходимо периодически проверять на наличие коррозии.
Одна из компаний использует баллоны, рассчитанные на давление 30 МПа[2].
Баллоны описываемых транспортных средств необходимо заправлять на специальных заправочных станциях, имеющих необходимое оборудование. Затраты на вождение подобных воздухомобилей, как обычно предполагается, должны составлять порядка €0,75 на 100 км, при полной перезарядке баллонов на «баллонной станции» — около US$[уточнить]3.
Сжатый воздух имеет низкую энергетическую плотность. При давлении 300 бар, энергетическая плотность может достигать около 0,1 МДж/литр (с учётом возможности нагрева воздуха), что сравнимо с ёмкостью электрохимических свинцовых аккумуляторных батарей. Однако по мере разряжения батарей напряжение на их выходах падает относительно не сильно; в автомобилях на химическом топливе обеспечивается постоянная мощность на выходе от первого до последнего литра этого топлива. В то же время, давление на выходе из баллонов падает по мере расходования воздуха. Газ в баллоне акваланга может быть сжат до 1000 Бар(100МПа), однако сейчас такие баллоны дороги и имеют малый объем.
Автомобиль обычного размера и формы потребляет на ведущем валу около 0,6—1,0 МДж на 1 км пути[3], хотя совершенствование формы может привести к уменьшению этого числа.
Как и другие технологии, не использующие сжигание топлива, использование транспортных средств на сжатом воздухе позволяет избавиться от выбросов на дорогах через выхлопные трубы, и переместить их на централизованные электростанции, что облегчает процесс утилизации этих выбросов. Однако в сжатый воздух таких транспортных средств необходимо добавлять смазывающие материалы для уменьшения сил трения и снижения износа пневмооборудования. Эти смазывающие материалы также впоследствии могут загрязнять окружающую среду.
Транспортные средства на сжатом воздухе по многим параметрам сравнимы с работающими на аккумуляторных батареях, но имеют такие потенциальные преимущества:
В транспортных средствах на сжатом воздухе протекают различные термодинамические процессы, такие как охлаждение при расширении и нагревание при сжатии воздуха. Поскольку на практике невозможно использовать идеальные теоретические процессы, то потери энергии обязательно происходят, и совершенствование может идти по пути их снижения. Одним из направлений может быть использование больших теплообменников, позволяющих, с одной стороны, эффективнее нагревать пневмодвигатель, а с другой, охлаждать пассажирский салон. В то же время, получаемое при сжатии воздуха тепло, может быть использовано для нагревания жидкостных (водных) систем и использовано позднее.
Один из производителей заявил о разработке пневмодвигателя, имеющего 90 % КПД[8].
В начале XIX века использование сжатого воздуха в качестве привода различных систем было весьма широко распространено и стало исчезать лишь с продвижением в массовое использование электричества[10]. До этого пневмопривод находил воплощение в различных приборах — от пневмозвонков в дверях, пневмопочты, пневматического оружия и до предложенной в 1827 году пневматической железной дороги.
В 1861 году на Александровском заводе в Санкт-Петербурге С. И. Барановским был построен локомотив на пневматическом приводе, который получил название духоход Барановского[11]. Локомотив использовался на Николаевской железной дороге до лета 1862 года.
Сжатый воздух используется с XIX века для привода локомотивов в горной промышленности. Кроме того, в некоторых городах, например, в Париже, сжатый воздух использовался для привода трамваев, запитывавшихся от центральной общегородской пневматической распределительной сети. Ранее сжатый воздух использовался в двигателях торпед, обеспечивавших их движение вперёд.
Во время строительства Сент-Готардской железной дороги в период с 1872 по 1882 годы, пневматические локомотивы использовались при прокладывании Готардского железнодорожного туннеля.
В 1903 году компания «Сжиженный воздух» (англ. Liquid Air Company), расположенная в Лондоне, производила автомобили на сжатом и сжиженном воздухе. Главными проблемами в этих автомобилях, как и вообще в автомобилях на сжатом воздухе, являлся (является) недостаточный вращательный момент пневмодвигателей и высокая стоимость сжатого воздуха[12]
В последнее время[когда?] несколько компаний начали разработку воздухомобилей на сжатом воздухе, хотя ни один из них не был выпущен для широкой публики, и не был протестирован независимыми специалистами.
В 1997 году мексиканское правительство заключила договор с европейской компанией MDI, представившей прототип Taxi Zero Pollution с, о постепенной замене таксопарка Мехико (одного из самых загрязненных мегаполисов мира) на «воздушный» транспорт.[13]
Трое студентов инженеры-механики из Университета штата Сан-Хосе; Даниэль Мекис, Деннис Шааф и Эндрю Мирович, спроектировали и построили велосипед, который работает на сжатом воздухе. Общая стоимость прототипа составила около 1000 долларов. Максимальная скорость была зарегистрирована в мае 2009 года и составила 23 миль/ч. (37 км/час)[14]
Мотоцикл на сжатом воздухе был сделан Эдвином Йи Юанем. Модель основана на Suzuki GP100 где Анжело Ди Пьетро использовал технологию сжатого воздуха[15]. Также модель от австралийского дизайнера Дина Бенстеда на базе Yamaha WR250R[16]
В рамках ТВ-шоу «Планета Механики», Джем Стэнсфилд и Дик Стравбридж превратили обычный скутер в мопед на сжатом воздухе.[17][18].
Несколько компаний занимаются исследованием и производством прототипов подобных автомобилей, планирует выпуск их на рынок в 2016 году.
Motor Development International (англ.) (рус. производит автомобили MultiCATs, которые могут использоваться в качестве автобусов или грузовиков.
![]() Автомобили на альтернативном топливе | |
---|---|
Топливный элемент |
|
Мускульный привод |
|
Солнечная энергия |
|
Пневматический двигатель |
|
Электрический аккумулятор и мотор |
|
Биотопливный двигатель |
|
Водород |
|
Другие |
|
Многотопливный |
|
Документальные фильмы |
|
Смотрите также |
|